Lagrange, central norms, and quadratic Diophantine equations
نویسنده
چکیده
As is often the case, some results get rediscovered over time. In particular, some rather striking results of Lagrange are often recreated. For instance, in [6], a result pertaining to the Pell equation for a prime discriminant was recast in the light of nonabelian cohomology groups. Yet, in [1], the authors acknowledged the fact that the result “has been discovered before,” and provided an elementary proof of it and two other results related to Lagrange. In this paper, we present complete generalizations of these results (see Theorems 3.1, 3.5, and 3.9 below), and do so with only elementary properties of the simple continued fraction expansions of general √ D. As a consequence, we obtain
منابع مشابه
Second Order Lagrange Multiplier Spaces for Mortar Finite Elements in 3D
Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...
متن کاملA Quasi-dual Lagrange Multiplier Space for Serendipity Mortar Finite Elements in 3d
Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...
متن کاملClass Numbers of Quadratic Fields Determined by Solvability of Diophantine Equations
In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteri...
متن کاملA Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems
A -system consists of quadratic Diophantine equations over nonnegative integer variables of the form:
متن کامل4 Generalized C 1 quadratic B - splines generated by Merrien subdivision algorithm and some applications
A new global basis of B-splines is defined in the space of generalized quadratic splines (GQS) generated by Merrien subdivision algorithm. Then, refinement equations for these B-splines and the associated corner-cutting algorithm are given. Afterwards, several applications are presented. First a global construction of monotonic and/or convex generalized splines interpolating monotonic and/or co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005